If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+9x-88=0
a = 18; b = 9; c = -88;
Δ = b2-4ac
Δ = 92-4·18·(-88)
Δ = 6417
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6417}=\sqrt{9*713}=\sqrt{9}*\sqrt{713}=3\sqrt{713}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-3\sqrt{713}}{2*18}=\frac{-9-3\sqrt{713}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+3\sqrt{713}}{2*18}=\frac{-9+3\sqrt{713}}{36} $
| -2(x-3)(4x+3)^2=0 | | 5(x+6)(3x-5)=0 | | (-3x+4)(x-2)=0 | | -v+59=221 | | -11=2u+7 | | 35=8-9u= | | 115-x+x+30+x=180 | | 2u+16=38= | | 4x2+18x+8=0 | | (2x+5)^-5/2=7 | | 5m^2+80=0 | | 2x+9/5=4x | | 9x-46=98 | | (1+y)(2y+3)=0 | | 40x35=4000 | | 20t^2-41t+20=0 | | 16.24-8x=6 | | s/4=53.40 | | 52=y/7 | | 6c-4c=10 | | 1/6=n/32 | | Y=9x+5000 | | 1000000=2000(3)^x | | (3x+1)=43 | | 6.8x-3=5.8x3 | | 50=100+2x | | 0.1^n=0.3 | | x+64+71=180 | | 75-(6x+7)=6(x+7)+x | | 7x2.43=17.01 | | (2x+6)/5=4x-3 | | -19x-12=-169 |